首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   139篇
  国内免费   175篇
测绘学   49篇
大气科学   67篇
地球物理   102篇
地质学   448篇
海洋学   272篇
天文学   8篇
综合类   56篇
自然地理   177篇
  2024年   2篇
  2023年   15篇
  2022年   30篇
  2021年   39篇
  2020年   42篇
  2019年   30篇
  2018年   36篇
  2017年   40篇
  2016年   42篇
  2015年   37篇
  2014年   55篇
  2013年   52篇
  2012年   50篇
  2011年   50篇
  2010年   39篇
  2009年   45篇
  2008年   46篇
  2007年   60篇
  2006年   55篇
  2005年   40篇
  2004年   45篇
  2003年   32篇
  2002年   39篇
  2001年   24篇
  2000年   30篇
  1999年   23篇
  1998年   30篇
  1997年   21篇
  1996年   16篇
  1995年   17篇
  1994年   16篇
  1993年   14篇
  1992年   13篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1971年   3篇
排序方式: 共有1179条查询结果,搜索用时 15 毫秒
51.
海洋表层初级生产力大小以及水体氧化还原条件是古海洋和古气候研究的重要内容,而元素地球化学是研究初级生产力以及氧化还原条件最常用的手段。主量元素Fe和Si是限制生物的营养元素,痕量金属元素Cu、Ni和Zn是微营养元素,而营养条件是沉积生产力的限制因素,因此这些元素的含量能反映初级生产力大小。Ba和Mo是随有机质一起沉淀下来的,与水体的有机碳通量有关,也是古生产力大小的指标。对氧化还原敏感的痕量金属元素含量(如Cr、V和U)以及元素比值(如V/(V+Ni)、V/Cr、Ni/Co、U/Th和V/Sc)常用来重构水体的氧化还原条件。  相似文献   
52.
1INTRODUCTIONIrrigated ricefieldsarecharacterizedbylargespatialandtemporalvariationsin CH4 emissiontotheatmo-sphere.Accordingly,thereisagreatuncertaintyintheestimate ofCH4 emissionsfromricefields.GreateffortshavebeenmadetoestimatetheCH4 emissionsfromricefieldsandseveralapproacheshavebeendeveloped.TherepresentativemethodsincludetheIPCC(Inter-governmentPanelofClimateChange)region-specificemissionfactormethodandthemodelcalculationmethod.Toimprovethecalculationaccuracy,theIPCCmethodreq…  相似文献   
53.
鄂霍次克海南部晚第四纪的古海洋学记录   总被引:1,自引:0,他引:1  
鄂霍次克海是太平洋第二大边缘海,在西北太平洋水文环境中扮演重要角色。综合分析了鄂霍次克海南部T00孔沉积物的多种替代性指标,揭示了鄂霍次克海晚第四纪以来的环境变化受季节性海冰变化、大气循环模式、陆源物质通量和表层生产力的共同影响。对比放射虫Cycladophora davisiana的含量曲线与LR04氧同位素记录,该孔沉积物可划分为氧同位素1-7期,底部年龄约为250ka。C.davisiana在间冰期的高含量表明鄂霍次克海中层水是北太平洋中层水的主要源区。蛋白石和有机碳的分析显示鄂霍次克海表层生产力在冰消期突然增大,随后在间冰期逐渐下降,冰期普遍较低。C/N比值曲线的分析说明鄂霍次克海的有机质沉积物主要来源于海洋。沉积物粒度的分析揭示鄂霍次克海冰期时陆源粗颗粒含量较低,至冰消期粗颗粒含量突然增加,而在间冰期陆源粗颗粒含量较高。  相似文献   
54.
Methane-rich fluids were recognized to be hosted in the reservoir volcanic rocks as primary inclusions.Samples were collected from core-drillings of volcanic gas reservoirs with reversed δ12C of alkane in the Xujiaweizi depression of the Songliao Basin. The volcanic rocks are rhyolite dominant being enriched in the more incompatible elements like Cs, Rb, Ba, Th, U and Th with relative high LREE, depleted HREE and negative anomalies of Ti and Nb,suggesting a melt involving both in mantle source and crustal assimilation. Primary fluids hosted in the volcanic rocks should have the same provenance with the magma. The authors concluded that the enclosed CH4 in the volcanics are mantle/magma-derived alkane and the reversed δ13C of alkane in the corresponding gas reservoirs is partly resulted from mixture between biogenic and abiogenic gases.  相似文献   
55.
在验证CENTURY模型对中国陆地植被净初级生产力(Net Primary Productivity,NPP)模拟能力的基础上,利用该模型探讨了1981-2008年中国陆地植被NPP的年际变异和变化趋势对CO2浓度、温度和降水变化的响应。结果表明,中国陆地植被NPP对不同气候因子的响应程度存在明显不同。其中,CO2浓度变化对植被NPP年际变异的影响不显著,但能够引起中国大部分地区植被NPP趋势系数增大;温度对中国中高纬度地区植被NPP的年际变化影响显著,但就全国范围而言,植被NPP年际变异对温度变化的响应程度总体低于对降水变化的响应程度;降水变化是对中国植被NPP变化趋势起主导作用的气候因子。此外,综合考虑温度和降水变化的影响发现,植被NPP变化趋势的响应特征类似于降水单独变化时植被NPP变化趋势的响应特征。  相似文献   
56.
Remote sensing of vegetation gross primary production (GPP) is an important step to analyze terrestrial carbon (C) cycles in response to changing climate. The availability of global networks of C flux measurements provides a valuable opportunity to develop remote sensing based GPP algorithms and test their performances across diverse regions and plant functional types (PFTs). Using 70 global C flux measurements including 24 non-forest (NF), 17 deciduous forest (DF) and 29 evergreen forest (EF), we present the evaluation of an upscaled remote sensing based greenness and radiation (GR) model for GPP estimation. This model is developed using enhanced vegetation index (EVI) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) and global course resolution radiation data from the National Center for Environmental Prediction (NCEP). Model calibration was achieved using statistical parameters of both EVI and LST fitted for different PFTs. Our results indicate that compared to the standard MODIS GPP product, the calibrated GR model improved the GPP accuracy by reducing the root mean square errors (RMSE) by 16%, 30% and 11% for the NF, DF and EF sites, respectively. The standard MODIS and GR model intercomparisons at individual sites for GPP estimation also showed that GR model performs better in terms of model accuracy and stability. This evaluation demonstrates the potential use of the GR model in capturing short-term GPP variations in areas lacking ground measurements for most of vegetated ecosystems globally.  相似文献   
57.
Vast areas of rangelands across the world are grazed with increasing intensity, but interactions between livestock production, biodiversity and other ecosystem services are poorly studied. This study explicitly determines trade-offs and synergies between ecosystem services and livestock grazing intensity on rangelands. Grazing intensity and its effects on forage utilization by livestock, carbon sequestration, erosion prevention and biodiversity are quantified and mapped, using global datasets and models. Results show that on average 4% of the biomass produced annually is consumed by livestock. On average, erosion prevention is 10% lower in areas with a high grazing intensity compared to areas with a low grazing intensity, whereas carbon emissions are more than four times higher under high grazing intensity compared to low grazing intensity. Rangelands with the highest grazing intensity are located in the Sahel, Pakistan, West India, Middle East, North Africa and parts of Brazil. These high grazing intensities result in carbon emissions, low biodiversity values, low capacity for erosion prevention and unsustainable forage utilization. Although the applied models simplify the processes of ecosystem service supply, our study provides a global overview of the consequences of grazing for biodiversity and ecosystem services. The expected increasing future demand for livestock products likely increase pressures on rangelands. Global-scale models can help to identify targets and target areas for international policies aiming at sustainable future use of these rangelands.  相似文献   
58.
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation (NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling and Analysis (CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m^-2 yr^-1 and-0.14 gC m^- 2 yr^-2, respec- tively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at -1.79 gC m^-2 yr^-2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m^-2 yr^-1 and 0.84 gC m^-2 yr^-2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m^2 yr^-1 and 0.83 gC m^2 yr^-2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of-0.39 kg m^-2 yr^-1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration (experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-  相似文献   
59.
The seasonality of primary productivity plays an important role in nutrient and carbon cycling. We quantify the seasonality of satellite-derived, oceanic net primary production (NPP) and its interannual variability during the first decade of the SeaWiFS mission (1998 to 2007) using a normalized seasonality index (NSI). The NSI, which is based upon production half-time, t(1/2), generally becomes progressively more episodic with increasing latitude in open ocean waters, spanning from a relatively constant rate of primary productivity throughout the year (mean t(1/2) ~5 months) in subtropical waters to more pulsed events (mean t(1/2) ~3 months) in subpolar waters. This relatively gradual, poleward pattern in NSI differs from recent estimates of phytoplankton bloom duration, another measure of seasonality, at lower latitudes (~40°S–40°N). These differences likely reflect the temporal component of production assessed by each metric, with NSI able to more fully capture the irregular nature of production characteristic of waters in this zonal band. The interannual variability in NSI was generally low, with higher variability observed primarily in frontal and seasonal upwelling zones. The influence of the El Niño–Southern Oscillation on this variability was clearly evident, particularly in the equatorial Pacific, where primary productivity was anomalously episodic from the date line east to the coast of South America in 1998. Yearly seasonality and the magnitude of annual production were generally positively correlated at mid-latitudes and negatively correlated at tropical latitudes, particularly in a region bordering the Pacific equatorial divergence. This implies that increases of annual production in the former region are attained over the course of a year by shorter duration but higher magnitude NPP events, while in the latter areas it results from an increased frequency or duration of similar magnitude events. Statistically significant trends in the seasonality, both positive and negative, were detected in various patches. We suggest that NSI be used together with other phenomenological characteristics of phytoplankton biomass and productivity, such as the timing of bloom initiation and duration, as a means to remotely quantify phytoplankton seasonality and monitor the response of the oceanic ecosystem to environmental variability and climate change.  相似文献   
60.
Net primary productivity(NPP) is the most important index that represents the structure and function of the ecosystem.NPP can be simulated by dynamic global vegetation models(DGVM),which are designed to represent vegetation dynamics relative to environmental change.This study simulated the NPP of China's ecosystems based on the DGVM Integrated Biosphere Simulator(IBIS) with data on climate,soil,and topography.The applicability of IBIS in the NPP simulation of China's terrestrial ecosystems was verified first.Comparison with other relevant studies indicates that the range and mean value of simulations are generally within the limits of observations;the overall pattern and total annual NPP are close to the simulations conducted with other models.The simulations are also close to the NPP estimations based on remote sensing.Validation proved that IBIS can be utilized in the large-scale simulation of NPP in China's natural ecosystem.We then simulated NPP with climate change data from 1961 to 2005,when warming was particularly striking.The following are the results of the simulation.(1) Total NPP varied from 3.61 GtC/yr to 4.24 GtC/yr in the past 45 years and exhibited minimal significant linear increase or decrease.(2) Regional differences in the increase or decrease in NPP were large but exhibited an insignificant overall linear trend.NPP declined in most parts of eastern and central China,especially in the Loess Plateau.(3) Similar to the fluctuation law of annual NPP,seasonal NPP also displayed an insignificant increase or decrease;the trend line was within the general level.(4) The regional differences in seasonal NPP changes were large.NPP declined in spring,summer,and autumn in the Loess Plateau but increased in most parts of the Tibetan Plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号